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We first survey componentwise and normwise perturbation bounds for the
standard least squares (LS) and minimum norm problems. Then some recent
estimates of the optimal backward error for an alleged solution to an LS
problem are presented. These results are particularly interesting when the
algorithm used is not backward stable.

The QR factorization and the singular value decomposition (SVD), developed
in the 1960s and early 1970s, remain the basic tools for solving both the LS
and the total least squares (TLS) problems. Current algorithms based on
Householder or Gram–Schmidt QR factorizations are reviewed. The use of
the SVD to determine the numerical rank of a matrix, as well as for computing
a sequence of regularized solutions, is then discussed. The solution of the TLS
problem in terms of the SVD of the compound matrix (b A) is described.

Some recent algorithmic developments are motivated by the need for the
efficient implementation of the QR factorization on modern computer archi-
tectures. This includes blocked algorithms as well as newer recursive imple-
mentations. Other developments come from needs in different application
areas. For example, in signal processing rank-revealing orthogonal decom-
positions need to be frequently updated. We review several classes of such
decompositions, which can be more efficiently updated than the SVD.

Two algorithms for the orthogonal bidiagonalization of an arbitrary matrix
were given by Golub and Kahan in 1965, one using Householder transforma-
tions and the other a Lanczos process. If used to transform the matrix (b A)
to upper bidiagonal form, this becomes a powerful tool for solving various
LS and TLS problems. This bidiagonal decomposition gives a core regular
subproblem for the TLS problem. When implemented by the Lanczos pro-
cess it forms the kernel in the iterative method LSQR. It is also the basis of
the partial least squares (PLS) method, which has become a standard tool in
statistics.



We present some generalized QR factorizations which can be used to solve
different generalized least squares problems. Many applications lead to LS
problems where the solution is subject to constraints. This includes linear
equality and inequality constraints. Quadratic constraints are used to regu-
larize solutions to discrete ill-posed LS problems. We survey these classes of
problems and discuss their solution.

As in all scientific computing, there is a trend that the size and complexity
of the problems being solved is steadily growing. Large problems are often
sparse or structured. Algorithms for the efficient solution of banded and
block-angular LS problems are given, followed by a brief discussion of the
general sparse case. Iterative methods are attractive, in particular when
matrix-vector multiplication is cheap.
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1. Introduction

The method of least squares has been the standard procedure for the ana-
lysis of data from the beginning of 1800s. A famous example of its use is
when Gauss successfully predicted the orbit of the asteroid Ceres in 1801.
Two hundred years later, least squares remains a widely used computational
principle in science and engineering.

In the simplest case the problem is, given A ∈ R
m×n and b ∈ R

m, to find
a vector x ∈ R

n such that

min
x

‖b − Ax‖2, (1.1)

where ‖ · ‖2 denotes the Euclidean norm. A least squares solution x is
characterized by r ⊥ R(A), where r = b − Ax is the residual and R(A) the
range space of A. The residual r is uniquely determined and the solution x
is unique if and only if rank(A) = n. If rank(A) < n, we seek the unique
least squares solution x ⊥ N (A), which is called the pseudo-inverse solution.



Under-determined systems arise from problems where there are more vari-
ables than needed to match the observed data. The model problem for this
case is to find y ∈ R

m such that

min ‖y‖2, AT y = c, (1.2)

where c ∈ R
n. Here y ∈ R

m, the minimum norm solution of the consistent
under-determined system AT y = c, is characterized by y ⊥ N (AT ). If the
system AT y = c is not consistent we compute the pseudo-inverse solution.

When uncertainties are present also in the matrix A, the total least
squares (TLS) model is more appropriate. The TLS problem is

min ‖
(

E r
)

‖F , (A + E)x = b + r, (1.3)

where ‖ · ‖F denotes the Frobenius matrix norm.
Models where the parameters x occur nonlinearly are common, but in

this survey we will take the simplistic view that nonlinear problems can be
solved by linearization.

From the time of Gauss until the computer age the basic computational
tool for solving (1.1) was to form the normal equations AT Ax = AT b and
solve these by symmetric Gaussian elimination (which Gauss did), or later
by the Cholesky factorization (Benoit 1924). This approach has the draw-
back that forming the matrix AT A will square the condition number of the
original problem. This can lead to difficulties since least squares problems
are frequently ill-conditioned.

In the 1950s algorithms based on Gram–Schmidt orthogonalization were
widely used, although their numerical properties were not well understood
at the time. Björck (1967b) analysed the modified Gram–Schmidt algorithm
and showed its stability for solving linear least squares problems.

A breakthrough came with the seminal paper by Golub (1965), where
it was shown how to compute a QR factorization of A using Householder
transformations. A backward stable algorithm for the linear least squares
problems was given. Another important development, which took place
around the same time, was that of a stable algorithm for computing the sin-
gular value decomposition (SVD); see Golub and Kahan (1965) and Golub
(1968), and the Algol program for computing the SVD in Golub and Reinsch
(1970).

Modern numerical methods for solving least squares problems are sur-
veyed in the two comprehensive monographs by Lawson and Hanson (1995)
and Björck (1996). The latter contains a bibliography of 860 references,
indicating the considerable research interest in these problems. Hansen
(1998) gives an excellent survey of numerical methods for the treatment of
numerically rank-deficient linear systems arising, for example, from discrete
ill-posed problems. A comprehensive discussion of theory and methods for
solving TLS problems is found in Van Huffel and Vandewalle (1991).



Although methods continue to evolve, variations of the QR factorization
and SVD remain the basic tools for solving least squares problems. Much
of the algorithmic development taking place has been motivated by needs
in different application areas, e.g., statistics, signal processing and control
theory. For example, in signal processing data is often analysed in real time
and estimates need to be updated at each time step. Other applications
lead to generalized least squares problems, where the solution is subject
to linear or quadratic constraints. A common trend, as in all scientific
computing, is that the size and complexity of the problems being solved
are steadily growing. There is also an increased need to take advantage of
any structure that may exist in the model. Geodetic networks lead to huge
sparse structured least squares problems, that have to be treated by sparse
factorization methods. Other large-scale problems are better handled by a
combination of direct and iterative methods.

The following survey of some areas of recent progress represents a highly
subjective selection. Hopefully it will show that many interesting develop-
ments still take place in this field.

2. Perturbation analysis and stability

2.1. Perturbation analysis

Consider the least squares problem (1.1) with rank(A) = n and solution x
and residual vector r = b − Ax. Let the data A, b be perturbed to A + δA,
b+δb where rank(A+δA) = n. The perturbed solution by x+δx and r+δr
satisfies the normal equations

(A + δA)T (A + δA)(x + δx) = (A + δA)T (b + δb).

Subtracting AT Ax = AT b and solving for δx gives

δx ≈ A†(δb − δA x) + (AT A)−1δAT r, A† = (AT A)−1AT ,

where r = b−Ax is the residual and second-order terms have been neglected.
For r = 0 this reduces to the well-known first-order perturbation bound
for a square nonsingular linear system. For the residual we have δr ≈
(δb − δAx) − Aδx and hence

δr ≈ PN (AT )(δb − δA x) + (A†)T δAT r, PN (AT ) = I − AA†.

Here PN (AT ) is the orthogonal projection onto N (AT ). These equations
yield the componentwise estimates (see Björck (1991))

|δx| � |A†| (|δb| + |δA| |x|) + |(AT A)−1| |δA|T |r|, (2.1)

|δr| � |PN (AT )| (|δb| + |δA| |x|) + |(A†)T | |δA|T |r|, (2.2)



where the inequalities are to be interpreted componentwise. Taking norms
in (2.1) and using

‖A†‖2 = 1/σn, ‖(AT A)−1‖2 = 1/σ2
n,

where σn is the smallest singular value of A, we obtain the approximate
upper bound

‖δx‖2 �
1

σn
(‖δb‖2 + ‖δA‖2‖x‖2) +

1

σ2
n

‖δA‖2‖r‖2. (2.3)

It can be shown that for an arbitrary matrix A and vector b there are
perturbations δA and δb such that this upper bound is almost attained.
Note that when the residual r �= 0 there is an additional term not present
for consistent linear systems. The presence of this term, which will dominate
if ‖r‖2 > σn‖x‖2, was first pointed out by Golub and Wilkinson (1966).

Setting δb = 0 and assuming x �= 0, we get for the normwise relative
perturbation in x

‖δx‖2

‖x‖2
� κ(A)

‖δA‖2

‖A‖2

(

1 +
‖r‖2

σn‖x‖2

)

, (2.4)

where κ(A) = σ1/σn is the condition number of A.
For the minimum norm problem (1.2) with AT of full row rank, the solu-

tion can be expressed in terms of the normal equation as y = Az, where
AT Az = c. Proceeding as before and neglecting second-order terms in the
perturbation we obtain

δy ≈ PN (AT )δA A†y + (A†)T (δc − δAT y),

giving the componentwise approximate bound

|δy| � |PN (AT )| |δA| |A†| |y| + |(A†)T |(|δc| + |δA|T |y|). (2.5)

Taking norms we get

‖δy‖2 �
1

σn
(‖δc‖2 + 2‖δA‖2‖y‖2). (2.6)

The statistical model leading to the least squares problem (1.1) is that
the vector b of observations is related to the solution x by a linear relation
Ax = b + ǫ, where ǫ is a random error vector with zero mean and whose
components are uncorrelated and have equal variance. More generally, if the
covariance matrix of ǫ equals a symmetric positive definite matrix W , then
the best linear unbiased estimate of x is the solution to the least squares
problem minx(Ax − b)T W−1(Ax − b), or equivalently

min
x

‖W−1/2(b − Ax)‖2. (2.7)



If the errors are uncorrelated then W is a diagonal matrix and we set D =
diag(d1, . . . , dm) = W−1/2. Then (2.7) is a weighted least squares problem.
If some components of the error vector have much smaller variance than
the rest, κ(DA) ≫ κ(A) ≥ 1. The perturbation bound (2.4) then seems to
indicate that the problem is ill-conditioned. This is not necessarily so and
for such problems it is preferable to use the componentwise bounds (2.1)–
(2.2). Special methods for weighted problems are discussed in Björck (1996,
Section 4.4).

2.2. Backward error and stability

Consider an algorithm for solving the linear least squares problem (1.1).
The algorithm is said to be numerically stable if, for any data A and b,
there exist small perturbation matrices and vectors δA and δb, such that
the computed solution x̄ is the exact solution to

min
x

‖(A + δA)x − (b + δb)‖2, (2.8)

where ‖δA‖ ≤ τ , ‖δb‖ ≤ τ , with τ being a small multiple of the unit round-
off u. Any computed solution x̄ is called a stable solution if it satisfies
(2.8). This does not mean that x̄ is close to the exact solution x. If the
least squares problem is ill-conditioned then a stable solution can be very
different from x. For a stable solution the error ‖x − x̄‖ can be estimated
using the perturbation results given in Section 2.1.

The method by Golub (1965) based on Householder QR factorization is
known to be numerically stable with δb = 0 (Higham 2002, Theorem 20.3).
Methods which explicitly form the normal equations are not backward
stable. This is because round-off errors that occur in forming AT A and

AT b are not in general equivalent to small perturbations in A and b. Al-
though the method of normal equations gives results of sufficient accuracy
for many applications, its use can result in errors in the computed solution,
which are of much larger size than for a stable method.

Many fast methods exist for solving structured least squares problems,
e.g., when A is a Toeplitz or Cauchy matrix. These are not in general
backward stable (see Gu (1998b)), which is one reason why the following
results are of interest.

Given an alleged solution x̃, a backward error is a perturbation δA, such
that x̃ is the exact solution to the perturbed problem

min
x

‖(b + δb) − (A + δA)x‖2. (2.9)

If we could find the backward error of smallest norm, this could be used
to verify numerically the stability properties of an algorithm. There is not
much loss in assuming that δb = 0 in (2.10). Then the optimal backward



error in the Frobenius norm is

ηF (x̃) = min{‖δA‖F | x̃ solves min
x

‖b − (A + δA)x‖2}. (2.10)

How to find the optimal backward error for the linear least squares prob-
lem was an open problem for many years, until it was elegantly answered
by Waldén, Karlsson and Sun (1995). They solved the problem by char-
acterizing the set of all backward perturbations and by giving an optimal
bound, which minimizes the Frobenius norm ‖δA‖F ; see also Higham (2002,
pp. 392–393). Their main result can be stated as follows.

Theorem 1. Let x̃ be an alleged solution and r̃ = b−Ax̃ �= 0. The optimal
backward error in the Frobenius norm is

ηF (x̃) =

{

‖AT r̃‖2/‖r̃‖2, if x̃ = 0,

min{η, σmin([A C])}, otherwise,
(2.11)

where

η = ‖r̃‖2/‖x̃‖2, C = I − (r̃r̃T )/‖r̃‖2
2,

and σmin([A C]) denotes the smallest (nonzero) singular value of the matrix
[A C] ∈ R

m×(n+m).

The task of computing ηF (x̃) is thus reduced to that of computing σmin(A).
Since this is expensive, approximations that are accurate and less costly have
been derived. Karlsson and Waldén (1997) assume that a QR factorization
of A is available and give lower and upper bounds for ηF (x̃) that only re-
quire O(mn) operations. Gu (1998a) gives several approximations to ηF (x̃)
that are optimal up to a factor less than 2. His bounds are formulated in
terms of the singular value decomposition of A but his Corollary 2.2 can
also be stated as follows.

Let r1 = PR(A)r̃ be the orthogonal projection of r̃ onto the range of A. If
‖r1‖2 ≤ α‖r‖2 it holds that

√
5 − 1

2
σ̃1 ≤ ηF (x̃) ≤

√

1 + α2 σ̃1, (2.12)

where

σ̃1 =
∥

∥(AT A + ηI)−1/2AT r̃
∥

∥

2
/‖x̃‖2. (2.13)

Since α → 0 for small perturbations σ̃1 is an asymptotic upper bound.
Optimal backward perturbation bounds for under-determined systems are

derived in Sun and Sun (1997). The extension of backward error bounds
to the case of constrained least squares problems is discussed by Cox and
Higham (1999b).



3. Orthogonal decompositions

3.1. Algorithms using Householder reflections

The QR factorization of a matrix A ∈ R
m×n is

A = Q

(

R
0

)

, (3.1)

where R ∈ R
n×n is upper triangular and Q ∈ R

m×m is orthogonal. If A has
linearly independent columns, i.e., rank(A) = n, then R is nonsingular. If
we partition

Q =
(

Q1 Q2

)

, Q1 ∈ R
m×n, Q2 ∈ R

m×(m−n),

we obtain the compact form A = Q1R of the QR factorization. In the full
rank case Q1 and R are uniquely determined, provided R is normalized to
have positive diagonal elements. Q1 gives an orthogonal basis for R(A).
Q2, which is not uniquely determined, gives an orthogonal basis for N (AT ).

The standard method to compute the QR factorization (3.1) is to pre-
multiply A with a product of Householder reflections QT = Pn · · ·P2P1,
where

Pj = I − 2vjv
T
j /‖vj‖2

2, j = 1 : n,

is constructed to zero out the elements below the main diagonal in the jth
column of A. Since a Householder reflection is symmetric and orthogonal,

Q = P1P2 · · ·Pn. (3.2)

There is usually no need to form Q explicitly, since the matrix–vector
products Qy and QT z can be efficiently formed using only the Householder
vectors v1, v2, . . . , vn. Since vj only has nonzero elements in positions j : m,
these can be stored in an m×n lower trapezoidal matrix. In the dense case
this is the most compact representation possible of Q and QT .

Given the QR factorization (3.1), the solution x to the linear least squares
problem (1.1) and the corresponding residual r = b − Ax is computed:

(

d1

d2

)

= QT b, x = R−1d1, r = Q

(

0
d2

)

= Q2d2. (3.3)

This algorithm is backward stable (with δb = 0) both for computing the
solution x and the residual r = b − Ax; see Higham (2002, Theorem 20.3).

Note that the residual r solves the problem of computing the orthogonal
projection of b onto N (AT ):

min
r

‖b − r‖2 subject to AT r = 0.

In some applications we are more interested in the residual r than in the
solution x. From the stability (see also the error analysis in Björck (1967a))



it follows that the computed residual r̄ using (3.3) satisfies a relation

(A + E)T r̄ = 0, ‖E‖2 ≤ cu‖A‖2. (3.4)

Here and in the following c is a generic constant that grows slowly with n.
This implies

‖AT r̄‖2 ≤ cu‖r̄‖2‖A‖2, (3.5)

that is, the computed residual is accurately orthogonal to R(A). On the
other hand, if r̄ = fl(b−Ax), then the best bound we can guarantee is of the
form ‖AT r̄‖2 ≤ cu‖b‖2‖A‖2, even if x is the exact least squares solution,
When ‖r̄‖2 ≪ ‖b‖2 this is a much weaker bound than (3.5).

The solution to the minimum norm problem (1.2) can be computed from
the QR factorization (3.1) using

z = R−T c, y = Q

(

z
0

)

= Q1z. (3.6)

The fact that this algorithm is backward stable is a relatively new result
and the first proof was published in Higham (1995, Theorem 20.3).

An implementation of Householder QR factorization is given in Businger
and Golub (1965) (see Wilkinson and Reinsch (1971, Contribution I/8)). A
more general implementation, that also solves least squares problems with
linear constraints and performs a stable form of iterative refinement of the
solution, is given in Björck and Golub (1967).

3.2. Algorithms using modified Gram–Schmidt

In Gram–Schmidt orthogonalization the kth column of Q in the QR fac-
torization is computed as a linear combination of the first k columns in A.
This is equivalent to computing the compact QR factorization1

A = (a1, a2, . . . , an) = (q1, q2, . . . , qn)











r11 r12 · · · r1n

r22 · · · r2n

. . .
...

r2n











.

Gram–Schmidt QR factorization can also be described as employing a
sequence of elementary orthogonal projections to orthogonalize a given se-
quence of vectors For any nonzero vector a ∈ R

m the orthogonal projector
P onto the orthogonal complement of a is given by

P = Im − qqT , q = a/‖a‖2. (3.7)

1 Trefethen and Bau, III (1997) aptly calls Householder QR orthogonal triangularization
and Gram–Schmidt QR triangular orthogonalization.



Two versions of the Gram–Schmidt algorithm exist, usually called the
Classical Gram–Schmidt (CGS) and the Modified Gram–Schmidt (MGS)
algorithms. Although these only differ in the order in which the operations
are performed, MGS has much better numerical stability properties.

Setting aj = a
(1)
j , j = 1 : n, in MGS at the beginning of step k, k = 1 : n,

we have computed

(q1, . . . , qk−1, a
(k)
k , . . . , a(k)

n ), (3.8)

where a
(k)
k , . . . , a

(k)
n are orthogonal to q1, . . . , qk−1. First the vector qk is

obtained by normalizing a
(k)
k . The remaining columns are then made ortho-

gonal2 to qk, using orthogonal projections

a
(k+1)
j = (I − qkq

T
k )a

(k)
j = a

(k)
j − qk(q

T
k a

(k)
j ), j = k + 1 : n.

Owing to rounding errors the computed Q1 = (q1, q2, . . . , qn) will not be
orthogonal to working accuracy. For MGS the loss of orthogonality can be
bounded in terms of the condition number of A, namely,

‖I − QT
1 Q1‖2 ≤ c1uκ(A),

where u is the unit round-off; see Björck (1967b), Björck and Paige (1992).
Because of the loss of orthogonality care is needed in using the MGS fac-

torization. Using a remarkable connection between MGS and Householder
QR factorization, Björck and Paige (1992) were able to analyse MGS and
rigorously prove the stability of several algorithm based on the MGS fac-
torization. If these algorithms are used with MGS there is no need for

reorthogonalization of the q vectors for computing least squares solutions,
orthogonal projections or solving minimum norm problems. Since few text-
books describe these stable algorithms we present them again here.

Linear least squares solution by MGS

Carry out MGS on A ∈ Rm×n, rank(A) = n, to give Q1 = (q1, . . . , qn) and
R, and put b(1) = b. Compute the vector z = (z1, . . . , zn)T by

for k = 1 : n

zk = qT
k b(k); b(k+1) = b(k) − zkqk;

end

r = b(n+1);

solve Rx = z;

2 MGS can also be organized so that all previous projections to ak are applied in the kth
step, but this version is not suitable for column pivoting.



This algorithm for solving linear least squares problems by MGS was quite
widely used even in the 1960s. A common mistake, still to be found in some
textbooks, is to compute x from Rx = d, where d = QT

1 b, which may ruin
the accuracy in the solution.

Orthogonal projection by MGS

To make MGS backward stable for r it suffices to add a loop where the
vector b(n+1) is orthogonalized against qn, qn−1, . . . , q1:

for k = n, n − 1, . . . , 1

zk = qT
k b(k+1); b(k) = b(k+1) − zkqk;

end

r = b(1);

Note that the reorthogonalization has to be done in reverse order to prove
that r̄ is stable; see Björck and Paige (1992).

Minimum norm solution by MGS

Carry out MGS on AT ∈ Rm×n, with rank(A) = n to give Q1 = (q1, . . . , qn)
and R. Then the minimum norm solution y = y(0) is obtained from

RT (ζ1, . . . , ζn)T = c;

y(n) = 0;

for k = n, . . . , 2, 1

ωk = qT
k y(k); y(k−1) = y(k) − (ωk − ζk)qk;

end

If the columns of Q1 were orthogonal to working accuracy, then ωk = 0,
k = m, . . . , 1. Here ω compensates for the lack of orthogonality to make
this algorithm backward stable!

There are a few applications where it is advantageous to compute a mat-
rix Q1 that is orthogonal to working precision; see Giraud, Langou, and
Rozložnık (2002). The classical schemes for reorthogonalization described
in Hoffman (1989) will approximately double the cost of the factorization. A
new, more efficient reorthogonalization scheme, based on a low-rank update
of Q1, is described in Giraud, Gratton and Langou (2003).

3.3. Algorithms using SVD

The singular value decomposition is in general the most versatile decom-
position for treating rank-deficient and severely ill-conditioned least squares



problem. We write the SVD in the partitioned form

A = (U1 U2)

(

Σ1 0
0 Σ2

) (

V T
1

V T
2

)

, (3.9)

Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn), (3.10)

where σ1 ≥ σ2 ≥ · · · ≥ σn.
If σr+1 = 0, then A has rank r and

x = A†b = V1Σ
−1
1 UT

1 b =
r

∑

i=1

uT
i b

σi
vi (3.11)

is the pseudo-inverse solution. This is also the unique solution to the least
squares problem

min
x∈S

‖x‖2, S = {x ∈ R
n | ‖b − Ax‖2 = min}. (3.12)

The mathematical concept of rank is not, in general, computationally
useful. The numerical rank of a matrix A ∈ R

n×m is defined in terms of its
singular values. A is said to have the numerical ǫ-rank equal to r < n if its
singular values satisfy

σr > ǫ ≥ σr+1,

where ǫ is a problem-dependent parameter.
If A is ill-conditioned, but there is a gap between σr and σr+1, then the

numerical rank r is well defined. The SVD can be used to extract the
linearly independent information in A, to arrive at a more well-conditioned
problem. We have

A = U1Σ1V
T
1 + E, E = U2Σ2V

T
2 . (3.13)

Among the perturbation that makes A+E have exact rank r, (3.13) minim-
izes both ‖E‖2 = σr+1, and ‖E‖F . The approximate least squares solution
(3.11) is called the truncated SVD (TSVD) solution. It is the least squares
solution restricted to the subspace R(V1). The matrices U1 and V2 give
orthogonal bases for the numerical range space and null space, respectively,
of A.

The total least squares problem is best analysed in terms of the SVD
(

b A
)

= Û Σ̂V̂ T , Σ̂ = diag(σ̂1, . . . , σ̂n+1).

Assume for simplicity that rank(A) = n and σ̂n+1 < σ̂n. Then the unique
perturbation of minimum norm ‖

(

r E
)

‖F that makes (A + E)x = b + r
consistent is the rank one perturbation

(

r E
)

= −σ̂n+1ûn+1v̂
T
n+1 = −

(

b A
)

v̂n+1v̂
T
n+1. (3.14)



Multiplying (3.14) from the right with v̂n+1 gives
(

b A
)

v̂n+1 = −
(

r E
)

v̂n+1. (3.15)

Writing the relation (A + E)x = b + r in the form

(

b A
)

(

1
−x

)

= −
(

r E
)

(

1
−x

)

and comparing with (3.15), it is easily seen that the TLS solution

x = γ(v̂2,n+1, . . . , v̂n+1,n+1)
T , γ = −1/v̂1,n+1

is obtained from the right singular vector v̂n+1.
In the classical algorithm (Golub and Reinsch 1970) the SVD is computed

in three steps. In the first step A is transformed into upper bidiagonal form
UT

1 AV1 = B using orthogonal transformations (see Section 7). In the second
step the shifted QR algorithm is applied implicitly to the matrix BT B giving
the SVD B = U2ΣV T

2 . Finally, with U = U1U2 and V = V1V2 we obtain
the SVD A = UΣV T .

Subroutines for computing the SVD for dense rectangular matrices are
available in most mathematical software libraries; see Table 2.1 of Hansen
(1998) for a list. In Matlab the command [U,S,V] = svd(A) computes
the SVD of a matrix of dimension 500 in only about 12 seconds on a modest
SUN-server (Eldén 2004).

A survey of direct methods for computing the SVD is given in Bai, Dem-
mel, Dongarra, Ruhe and van der Vorst (2000, Section 6.2). A divide-and-
conquer method for finding the the SVD of a bidiagonal matrix is imple-
mented in the LAPACK subroutine xGESDD. This is faster than the QR
algorithm for bidiagonal matrices larger than about 25× 25. Bisection and
inverse iteration can be used when we only want to compute the singular
values in an interval and the corresponding left and right singular vectors.
(This option is suitable for the TLS problem.) Bisection methods, analysed
in Fernando (1998), rely on a very accurate algorithm for counting singular
values of a bidiagonal matrix.

4. Generalized least squares problems

4.1. Generalized orthogonal decompositions

The motivation for introducing different generalizations of orthogonal de-
compositions is basically to avoid the explicit computation of matrix pro-
ducts and quotients of matrices. For example, let A and B be square and
nonsingular matrices and assume we need the SVD of AB−1 (or AB). Then



the explicit calculation of AB−1 (or AB) may result in a loss of precision
and should be avoided.

An early application of generalized QR decomposition (GQR) is described
in Hammarling (1976). The systematic use of GQR as a basic conceptual
and computational tool are explored by Paige (1990), who shows that these
decompositions allow the solution of very general formulations of several
least squares problems. Further generalizations are discussed in De Moor
and Van Dooren (1992), where the QR, URV and SVD decompositions are
generalized to any number of matrices.

Routines for computing a GQR decomposition of a pair of matrices A ∈
R

m×n and B ∈ R
m×p are included in LAPACK; see Anderson, Bai, Bis-

chof, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney,
Ostrouchov and Sorensen (1995, Section 2.3.3). The GQR decomposition is
given by

A = QR, B = QTZ, (4.1)

where Q ∈ R
m×m and Z ∈ R

p×p are orthogonal matrices and R and T have
one of the forms

R =

(

R11

0

)

(m ≥ n), R =
(

R11 R12

)

(m < n), (4.2)

and

T =
(

0 T12

)

(m ≤ p), T =

(

T11

T21

)

(m > p). (4.3)

If B is square and nonsingular GQR implicitly gives the QR factorization
of B−1A. There is also a similar generalized RQ factorization related to
the QR factorization of AB−1. These generalized decompositions and their
applications are discussed in Anderssen, Bai and Dongarra (1992).

Similar generalizations for the SVD were first discussed in Van Loan
(1976) and Paige and Saunders (1981). Paige (1986) gave an algorithm
for computing the the quotient SVD (QSVD) of two matrices A ∈ R

m×n

and B ∈ R
p×n; when B is square and nonsingular this is equivalent to the

SVD of AB−1. The computation of the SVD of AB, the product SVD
(PSVD), is discussed in Heath, Laub, Paige and Ward (1986). These gen-
eralized SVDs are special cases of a more general theory developed by De
Moor and Zha (1991). The GSVD algorithms in LAPACK are based on Bai
and Demmel (1993), where several improvements of Paige’s algorithm are
given. An important role in these algorithms is played by a new accurate
algorithm for the 2 × 2 triangular GSVD.

In Golub, Solna and Van Dooren (1995), an algorithm is developed for
computing the SVD of an expression of the form

A = A
sp
p · · ·As2

2 As1

1 , si = ±1,



that is, a sequence of products or quotients of matrices Ai of compatible
dimensions. To illustrate the idea, consider for simplicity the case when
si = 1. Then it is possible to construct orthogonal matrices Qi, i = 0 : p,
such that the product

B = QT
p ApQp−1 · · ·QT

2 A2Q1Q
T
1 A1Q0

is a bidiagonal matrix. The SVD of B can then be found by standard
methods.

4.2. Generalized least squares problems

An important class of generalized least squares problems is related to sym-
metric linear systems of the form

(

V A
AT 0

) (

y
x

)

=

(

b
c

)

, (4.4)

where A ∈ R
m×n (m ≥ n), and V ∈ R

m×m, is symmetric and positive
semi-definite. The system matrix in (4.4) is symmetric but indefinite; it is
nonsingular if and only if A has full column rank and (V A) full row rank.
Linear systems of this form (4.4) represent the condition for equilibrium of
a physical system and therefore occur in numerous applications. It is also
called a saddle point system and in optimization it is known as a KKT
(Karush–Kuhn–Tucker) system. In applications V and A are often large
and sparse matrices.

If V is positive definite and A has full column rank, then the system (4.4)
is nonsingular and gives the first-order conditions for the solution of the
following two optimization problems.

1. Generalized linear least squares problem (GLLS)

min
x

(Ax − b)T V −1(Ax − b) + 2cT x. (4.5)

If c = 0, the solution x gives the best linear unbiased estimate for the linear
model Ax + ǫ = b, where V = σ2V is the covariance matrix of the error
vector ǫ.

2. Equality-constrained quadratic optimization (ECQO)

min
y

1

2
yT V y − bT y, AT y = c. (4.6)

This problem occurs as a subproblem in linearly constrained optimization.
Another application, for which c = 0, is structural optimization (Heath,
Plemmons and Ward 1984). Here AT is called the equilibrium matrix, V
the element flexibility matrix, y is the force, and x a Lagrange multiplier
vector.



There are two different approaches to the solution of systems of the
form (4.4). In the range space method the y variables are eliminated to
obtain

AT V −1Ax = AT V −1b − c, y = V −1(b − Ax). (4.7)

For V = I the first equation in (4.7) is the normal equations for the least
squares problem. If V is positive definite then one way to solve these equa-
tions is to compute the Cholesky factorization V = BBT and then solve

min
x

‖B−1(Ax − b)‖2 (4.8)

using the QR factorization of B−1A. However, a more stable approach is
to use a GQR factorization of the matrix pair A, B.

In the null space method the solution y to (4.7) is split as

y = y1 + y2, y1 ∈ R(A), y2 ∈ N (AT ). (4.9)

Let y1 be the minimum norm solution of AT y = c. This can be computed
using the QR factorization of A. If we set Q =

(

Q1 Q2

)

then

y1 = Q1z1, z1 = R−T c.

Next y2 is obtained by solving the reduced system

QT
2 V Q2z2 = QT

2 (b − V y1), y2 = Q2z2. (4.10)

Finally, form

y = Q1z1 + Q2z2 and x = R−1QT
1 (b − V y).

In the special case that V = I, the numerical stability of methods which
use Q and R, or only R, in the QR factorization of A are studied in Björck
and Paige (1994). Backward stability was proved for several methods.

Recently perturbation analyses and condition numbers for problem (4.4)
have been given in Arioli (2000) and Gulliksson and Wedin (2000). Arioli
(2000) also gives a round-off error analysis of a null space method for solving
(4.4) and applies this to developing methods for solving a problem arising
from a mixed finite element discretization of a magnetostatic problem.

5. Blocked algorithms

5.1. Partitioned algorithms

The impact of the architecture of modern computers on algorithms of nu-
merical linear algebra is surveyed in depth in Dongarra, Duff, Sorensen
and van der Vorst (1998). One conclusion is that to obtain near-peak



performance for large dense matrix computations on current computing ar-
chitectures requires code that is dominated by level 3 Basic Linear Algebra
Subroutines (BLAS 3). These kernels perform various types of matrix–
matrix multiplication and involve less data movement per floating point
computation; see Dongarra, Du Croz, Duff and Hammarling (1990). The
subroutines in LAPACK, including those for QR factorization, are there-
fore organized in partitioned or blocked form, in which the operations have
been reordered and grouped into matrix operations. These partitioned al-
gorithms are as stable as their point counterparts. This is not the case for
all block algorithms; see Higham (1997) for the distinction between block
and partitioned algorithms.

For the QR factorization A ∈ R
m×n (m ≥ n) is partitioned as

A = (A1, A2), A1 ∈ R
m×nb, (5.1)

where nb is a suitable block size and the QR factorization

QT
1 A1 =

(

R1

0

)

, Q1 = P1P2 · · ·Pnb, (5.2)

is computed, where Pi = I − uiu
T
i are Householder reflections. Then the

remaining columns A2 are are updated

QT
1 A2 = QT

1

(

A12

A22

)

=

(

R12

Ã22

)

. (5.3)

In the next step we partition Ã22 = (B1, B2), and compute the QR factor-
ization of B1 ∈ R

(m−r)×r. Then B2 is updated as above, and we continue
in this way until the columns in A are exhausted.

A major part of the computation is spent in the updating step (5.3). As
written this step cannot use BLAS-3, which slows down the execution. To
achieve better performance it is essential to speed this part up. The solution
is to aggregate the Householder transformations so that their application can
be expressed as matrix operations; see Schreiber and Van Loan (1989). For
use in the next subsection, we show a slightly more general result due to
Elmroth and Gustavson (2000).

Assume that r = r1 + r2, and

Q1 = P1 · · ·Pr1
= I − Y1T1Y

T
1 , Q2 = Pr1+1 · · ·Pr = I − Y2T2Y

T
2 ,

where T1, T2 ∈ R
r×r are upper triangular. Then

Q = Q1Q2 = (I − Y1T1Y
T
1 )(I − Y2T2Y

T
2 ) = (I − Y TY T ), (5.4)



where

Ŷ = (Y1, Y2), T̂ =

(

T1 −(T1Y
T
1 )(Y2T2)

0 T2

)

. (5.5)

Note that Y is formed by concatenation, but computing the off-diagonal
block in T requires extra operations.

For the partitioned algorithm we use the special case when r2 = 1 to
aggregate the Householder transformations for each processed block. Start-
ing with Q1 = I − τ1u1u

T
1 , we set Y = u1, T = τ1 and update

Y := (Y, uk+1), T :=

(

T −τkTY T uk

0 τk

)

, k = 2 : nb. (5.6)

Note that Y will have a trapezoidal form and thus the matrices Y and R
can overwrite the matrix A. With the representation Q = (I − Y TY T ) the
updating of A2 becomes

B = QT
1 A = (I − Y T T Y T )A2 = A2 − Y T T Y T A2,

which now involves only matrix operations. An analogous partitioned ver-
sion of MGS is discussed in Björck (1994).

This partitioned algorithm requires more storage and operations than the
point algorithm, namely those needed to produce and store the T matrices.
However, for large matrices this is more than offset by the increased rate of
execution.

5.2. Recursive algorithms

As shown by Elmroth, Gustavson, Jonsson and K̊agström (2004) recursive
algorithms can be developed into highly efficient algorithms for high per-
formance computers and are an alternative to the partitioned algorithms
currently used by LAPACK. The reason for this is that recursion leads to
automatic variable blocking that dynamically adjusts to an arbitrary num-
ber of levels of memory hierarchy.

The recursive QR factorization

A =
(

A1 A2

)

= Q

(

R11 R12

0 R22

)

starts with a QR factorization of the first ⌊n/2⌋ columns of A and updating
of the remaining part of the matrix

QT
1 A1 =

(

R11

0

)

, QT
1 A2 = QT

1

(

A12

A22

)

=

(

R12

Ã22

)

.

Next Ã22 is recursively QR-decomposed, giving Q2, R22, and Q = Q1Q2.



As an illustration we give a simple implementation in Matlab, which is
convenient to use since it allows for the definition of recursive functions.

function [Y,T,R] = recqr(A);

%

% RECQR computes the QR factorization of the m by n matrix A,

% (m >= n). Output is the n by n triangular factor R, and

% Q = (I - YTY’) represented in aggregated form, where Y is

% m by n and unit lower trapezoidal, and T is n by n upper

% triangular It uses [u,tau,sigma] = house(a) to compute

% a Householder transformation P = I - tau uu’, such that

% Pa = sigma e1, sigma = -sign(a_1)norm(a).

[m,n] = size(A);

if n == 1

[Y,T,R] = house(A);

else

n1 = floor(n/2);

n2 = n - n1; j = n1+1;

[Y1,T1,R1]= recqr(A(1:m,1:n1));

B = A(1:m,j:n) - (Y1*T1’)*(Y1’*A(1:m,j:n));

[Y2,T2,R2] = recqr(B(j:m,1:n2));

R = [R1, B(1:n1,1:n2); zeros(n-n1,n1), R2];

Y2 = [zeros(n1,n2); Y2];

Y = [Y1, Y2];

T = [T1, -T1*(Y1’*Y2)*T2; zeros(n2,n1), T2];

end

%

The above algorithm is just a prototype and needs to be improved and tuned
in several ways. A serious defect is the overhead in storage and operations
caused by the T matrices. In the partitioned algorithm n/nb T -matrices of
size nb× nb are formed and stored, giving a storage overhead of 1

2n · nb. In
the recursive QR algorithm in the end a T -matrix of size n × n is formed
and stored, leading to a much too large storage and operation overhead.

Elmroth and Gustavson (2000) develop and analyse recursive algorithms
for the QR factorization. They find that the best option is a hybrid between
the partitioned and the recursive algorithm, where the recursive QR al-
gorithm is used to factorize the blocks in the partitioned algorithm. In
Elmroth and Gustavson (2001) these hybrid QR algorithms are used to
implement recursive algorithms for computing least squares solutions to
overdetermined linear systems and minimum norm solutions to under-deter-
mined linear systems. These implementations are shown to be significantly
faster – usually 50–100% and sometimes much more – than the correspond-
ing current LAPACK algorithms based on the partitioned approach.



6. Rank-revealing decompositions

6.1. Column pivoting

Golub (1965) remarks that the accuracy in the QR factorization is slightly
improved if the following column pivoting strategy is used. Assume that
after k steps we have computed the partial QR factorization

A(k) = (Pk · · ·P1)A(Π1 · · ·Πk) =

(

R
(k)
11 R

(k)
12

0 Ã(k)

)

, (6.1)

where Π1, . . . , Πk are permutation matrices performing the column inter-
changes. The remaining steps will only affect the submatrix Ã(k). The
pivot column in the step k + 1 is chosen as a column of largest norm in the
submatrix

Ã(k) = (ã
(k)
k+1, . . . , ã

(k)
n ) ∈ R

(m−k)×(n−k),

i.e., Πk+1 interchanges columns p and k + 1, where p is the smallest index
such that

s(k)
p ≥ s

(k)
j , s

(k)
j = ‖ã(k)

j ‖2, j = k + 1 : n. (6.2)

If s
(k)
p = 0 then the algorithm terminates with Ã(k) = 0 in (6.1), which

implies that rank(A) = k. This pivoting strategy can be viewed as choosing
a remaining column of largest distance to the subspace spanned by the
previously chosen columns and is equivalent to maximizing the diagonal
element rk+1,k+1.

Golub (1965) also notes that ‘the strategy above is most appropriate
when one has a sequence of vectors b1, b2, . . . , bp for which one desires a
least squares estimate. In many problems there is one vector b and one
wishes to express it in as few columns of A as possible.’ For this case one
should at each stage choose the column of A(k) that will maximally reduce
the sum of squares of the residuals after the kth stage. If

(Pk · · ·P1)b =

(

c
(k)
1

c
(k)
2

)

,

this is equivalent to choosing a pivot which maximizes

t
(k)
j = |(c(k)

2 )T ã
(k)
j |/‖ã(k)

j ‖2, k < j ≤ n.

The partitioned algorithm as reviewed in Section 5 cannot easily be imple-
mented for the pivoted QR factorization. This is because in order to choose
a pivot column all remaining columns need first to be updated. Therefore
it is not possible to accumulate several Householder transformations and



perform the update simultaneously. Quintana-Ort́ı, Sun and Bischof (1998)
show how the pivoted QR algorithm can be implemented so that half of the
work is performed in BLAS-3 kernels.

6.2. Rank-revealing QR decompositions

Rank-deficient problems are common, e.g., in statistics, where the term col-
linearity is used. Although the SVD is generally the most reliable method
for computing the numerical rank of a matrix it has the disadvantage of a
high computational cost. Alternative decompositions based on QR factoriz-
ation with column pivoting were first proposed in Faddeev, Kublanovskaya
and Faddeeva (1968) and Hanson and Lawson (1969).

Let A ∈ R
m×n be a matrix with singular values σ1 ≥ σ1 ≥ · · · ≥ σn ≥ 0.

By a rank-revealing QR (RRQR) decomposition of A we mean a decompos-
ition of the form

AΠ =
(

Q1 Q2

)

(

R11 R12

0 R22

)

, (6.3)

where Π is a permutation matrix, R11 ∈ R
k×k upper triangular, and

σk(R11) ≥
1

c1
σk, ‖R22‖2 ≤ c2σk+1. (6.4)

for some not too large constants c1 and c2. If σk+1 is small and σk ≫ σk+1,
then the factorization (6.4) will reveal that the numerical rank of A is k.

In (6.3) the matrix Q1 gives an orthogonal basis for the numerical range
of A and

W =

(

R−1
11 R12

−I

)

∈ R
n×(n−k) (6.5)

gives a basis for the numerical null space of AP . If a more accurate basis
than (6.5) is desired this can be computed using a few inverse iterations, as
suggested in Chan and Hansen (1990).

Hong and Pan (1992) prove the existence of a decomposition (6.3)–(6.4)
with

c =
√

k(n − k) + min(k, n − k), ∀k, 0 < k < n.

Thus, whenever there is a well-determined gap in the singular value spec-
trum, σr ≫ σr+1, there exists for k = r an RRQR decomposition that
reveals the numerical rank of A.

To find a permutation Π such that the rank of A is revealed is not always
simple. Note that an exhaustive search has combinatorial complexity! It is
still an open question if an algorithm of polynomial complexity exists for
finding an optimal permutation. Fortunately there are algorithms that in
practice work almost always.



From the interlacing properties of singular values (Golub and Van Loan
1996, Corollary 8.6.3) it follows by induction that, for any decomposition of
the form (6.3), we have the inequalities

σmin(R11) ≤ σk(A), σmax(R22) ≥ σk+1(A).

Hence, to achieve a rank-revealing QR decomposition we want to find a
permutation P that aims to solve the two problems

(i) max
Π

σmin(R11); (ii) min
Π

σmax(R22).

These two problems are dual in a certain sense.
Problem (i) is equivalent to the subset selection problem of determining

the k < n most linearly independent columns of A. An SVD-based algo-
rithm for solving this problem was given in Golub, Klema and Stewart
(1976) and an RRQR algorithm in Chan and Hansen (1992). Although the
methods will not in general compute equivalent solutions, the subspaces
spanned by the two sets of selected columns can be shown to be almost
identical whenever the ratio σk+1/σk is small.

The column pivoting strategy used in Golub (1965) chooses as the next
pivot column the one having maximum distance from the subspace spanned
by the already chosen columns. Hence this is a greedy algorithm that ad-
dresses problem (i). While this strategy can fail on certain matrices (see
Golub and Van Loan (1996, Section 5.5.7)), it is widely used due to its
simplicity and practical reliability. In several other RRQR algorithms this
pivoting strategy is used in a preprocessing stage. In the second stage a
new permutation matrix is determined so that the rank-revealing property
is improved.

Several algorithms have been suggested, which address problem (ii). These
are based on the following property.

Lemma 1. (Chan and Hansen (1990)) Given any column permutation
P and V ∈ R

n×p, the QR factorization of AP yields an R22 such that

‖R22‖2 ≤ ‖AV ‖2‖W−1
2 ‖2, W = P T V =

(

W1

W2

)

. (6.6)

This means that if the columns of V lie approximately in the numerical
null space of A and we can find a permutation such that ‖W−1

2 ‖2 is not
large, then the bottom p×p block of R in the QR factorization will be small.
Ideally, for p = 1, we take v ≈ vn, the right singular vector corresponding to
σn. The permutation P is chosen so that the component of largest absolute
value is moved to the end.

Early algorithms based on the above lemma include Golub et al. (1976)
and Chan (1987). Algorithms that satisfy (6.3)–(6.4) with c1, c2 equal to
low-order polynomials in n and m are developed in Pan and Tang (1999)



and Chandrasekaran and Ipsen (1994). These consist of two main stages: an
initial pivoted QR factorization of A followed by a rank-revealing stage in
which the triangular factor is modified. Chandrasekaran and Ipsen (1994)
provide a common framework for these algorithms.

In Bischof and Quintana-Ort́ı (1998b) more efficiently implementable vari-
ants of RRQR algorithm for triangular matrices are developed. In the first
stage a pivoted QR factorization is computed where the pivoting is restric-
ted to a pivot window. In the post-processing stage either Algorithm 3 in
Pan and Tang (1999) or Hybrid III in Chandrasekaran and Ipsen (1994) is
used. These hybrid algorithms are nearly as fast as current partitioned QR
algorithms without pivoting; see Bischof and Quintana-Ort́ı (1998a)

6.3. The URV and ULV decompositions

In signal processing problems the data analysed often arrives in real time
and it is necessary to update matrix decompositions at each time step. For
such applications the SVD has the disadvantage that it cannot in general
be updated in less than O(n3) operations, when rows and columns are ad-
ded or deleted to A. In special cases simplified updating schemes may be
viable, such as the fast SVD updating algorithm in Moonen, Van Dooren
and Vandewalle (1992), which is a combination of a QR updating followed
by a Jacobi-type SVD method.

Although the RRQR decomposition can be updated, it is less suitable in
applications where a basis for the approximate null space of A is needed,
since the matrix W in (6.5) cannot easily be updated. For this reason
Stewart (1991) introduced the URV rank-revealing decomposition

A = URV T =
(

U1 U2

)

(

R11 R12

0 R22

) (

V T
1

V T
2

)

, (6.7)

where U and V are orthogonal matrices, R11 ∈ R
k×k, and

σk(R11) ≥
1

c
σk,

(

‖R12‖2
F + ‖R22‖2

F

)1/2 ≤ cσk+1. (6.8)

Note that here both submatrices R12 and R22 have small elements.
From (6.7) we have

‖AV2‖2 =

∥

∥

∥

∥

(

R12

R22

)∥

∥

∥

∥

F

≤ cσk+1,

and hence the orthogonal matrix V2 can be taken as an approximation to
the numerical null space Nk.

Algorithms for computing a URV decomposition start with an initial QR
decomposition, followed by a rank-revealing stage in which singular vectors
corresponding to the smallest singular values of R are estimated. Assume



that w is a unit vector such that ‖Rw‖ = σn. Let P and Q be orthogonal

matrices such that QT w = en and P T RQ = R̂, where R̂ is upper triangular.
Then

‖R̂en‖ = ‖P T RQQT w‖ = ‖P T Rw‖ = σn,

which shows that the entire last column in R̂ is small. Given w the matrices
P and Q can be constructed as a sequence of Givens rotations (see Stewart
(1992), where algorithms are also given for updating a URV decomposition
when a new row is appended).

As for the RRQR decompositions, the URV decomposition yields approx-
imations to the singular values. Mathias and Stewart (1993) derive the
following bounds:

fσi ≤ σi(R11) ≤ σi, i = 1 : r,

and

σi ≤ σi−k(R22) ≤ σi/f, i = r + 1 : n,

where

f =

(

1 − ‖R12‖2
2

σmin(R2
11 − ‖R22‖2

2

)1/2

.

Hence the smaller the norm of the off-diagonal block R12, the better the
bounds will be. Similar bounds can be given for the angle between the
range of V2 and the right singular subspace corresponding to the smallest
n − r singular values of A.

Stewart (1993) gives an alternative decomposition that is more satisfact-
ory for applications where an accurate approximate null space is needed, as
in subspace tracking. This is the rank-revealing ULV decomposition

A = U

(

L11 0
L21 L22

)

V T , (6.9)

where the middle matrix has lower triangular form. For this decomposition

‖AV2‖2 = ‖L22‖F , V = (V1, V2),

and hence the size of ‖L21‖ does not adversely affect the null space approx-
imation. On the other hand the URV decomposition usually gives a superior
approximation for the numerical range space and the updating algorithm
for URV is much simpler.

We finally mention that rank-revealing QR decompositions can be effect-
ively computed only if the numerical rank r is either high, r ≈ n or low,
r ≪ n. The low rank case is discussed in Chan and Hansen (1994). Matlab

templates for rank-revealing UTV decompositions are described in Fierro,
Hansen and Hansen (1999).



6.4. Stewart’s QLP decomposition

The ULV and URV decompositions are rank-revealing, but do not attempt
to give good approximations to the singular values. The pivoted QLP de-
composition, also introduced by Stewart (1999), yields for the extra cost of
one more QR decomposition quite accurate approximations to the singular
values of A. The QLP decomposition can be considered as the first step in
a rapidly converging iterative algorithm for computing the SVD of A, which
is analysed in Huckaby and Chan (2003).

The QLP algorithm starts by computing the pivoted QR factorization

QT AΠ =

(

R
0

)

, R ∈ R
n×n. (6.10)

In the second step the upper triangular matrix R is transformed into a lower

triangular matrix L, using postmultiplication by a product P of Householder
transformations,

RP = L, L ∈ R
n×n. (6.11)

No pivoting is used in this step. (Transposing (6.11) shows that this LQ
factorization of R is equivalent to a QR factorization of the lower triangular
matrix RT .) Combining these two factorizations (6.10) and (6.11) we obtain

AΠ = Q

(

L
0

)

P T . (6.12)

To compute the QLP decomposition requires roughly mn2 − n3/3 flops for
the decomposition (6.10) and 2n3/3 flops for the decomposition (6.11).

Suppose that after k steps of the pivoted Householder QR algorithm (6.10)
we have computed the partial QR factorization

QkAΠk = A(k+1) =

(

R11 R12

0 Ã22

)

,

where
(

R11 R12

)

are the first k rows of R in the QR factorization of A.
By postmultiplying with k Householder transformations we obtain

(

R11 R12

)

Pk =
(

L11 0
)

,

where L11 is the first k rows of L in the QLP decomposition. This observa-
tion shows that the two factorization can be interleaved, i.e., in the kth step
we first compute the kth row of R and then the kth row of L. To determine
the first k diagonal elements of L, which give the QLP approximations to
the first k singular values of A, it is only necessary to perform k steps in
each of the two factorization. This is advantageous when the numerical rank
is much less than n.

Despite the simplicity of the QLP decomposition the diagonal elements
of L usually give remarkably good approximations to all the singular values
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Figure 6.1. Diagonal elements of L (circles) in the QLP
and in R (plus) in pivoted QR compared with singular
values (points) of the matrix K.

of A. In particular a good estimate of σ1 = ‖A‖2 can be obtained in O(n2)
operations from the first row

(

r11 r12

)

of R setting

σ1 ≈ l11 = (r2
11 + ‖r12‖2

2)
1/2.

As an illustration we consider the integral equation of the first kind
∫ 1

−1
k(s, t)f(s) ds = g(t), k(s, t) = e−(s−t)2 ,

on −1 ≤ t ≤ 1. If this equation is discretized using a uniform mesh on [−1, 1]
and the trapezoidal rule, the resulting linear system Kf = g, K ∈ R

n×n,
is very ill-conditioned. In Figure 6.1 the singular values σk of the matrix
Kn, n = 100, are displayed together with (absolute values of) the diagonal
elements of R and L in the QLP decomposition. The diagonal elements of L
are seen to track both large and small singular values much more accurately
than those of R.

7. Bidiagonal reduction

Any matrix A ∈ R
m×n can be decomposed as

A = UBV T , (7.1)

where B is an upper (or lower) bidiagonal matrix and U and V are ortho-
gonal matrices. This important decomposition first appeared in Golub and
Kahan (1965). It is usually the first step in computing the SVD of A, but



is also a powerful tool in itself for solving various least squares problems.
It is the core decomposition used in the iterative method LSQR (Paige and
Saunders 1982b) for solving least squares problems. Recently Paige and
Strakoš (2002) (see also Paige (2002)) have shown that the reduction to
upper bidiagonal form of

(

b A
)

provides an elegant way to extract a core
problem, both for the linear least squares problem (1.1) and the total least
squares problem (1.3). Because of its importance we review this decompos-
ition in some detail below.

Golub and Kahan (1965) gave two quite different algorithms for comput-
ing the decomposition (7.1). In the first algorithm U and V are formed as
products of two sequences of Householder transformations. In the second
algorithm the successive columns in U and V are generated by a Lanczos
process. Once the first column u1 = Ue1 (or v1 = V e1) is fixed, the decom-
position (7.1) is uniquely determined in the nondegenerate case. Therefore
the two algorithms will, using exact arithmetic, produce the same bidiagonal
decomposition. However, the Lanczos method is less stable numerically and
is mainly of interest when A is a large and sparse matrix.

7.1. Bidiagonalization using Householder transformations

With no loss of generality we assume that m ≥ n. Following the first
algorithm in Golub and Kahan (1965), for k = 1, 2, . . . , we alternately
multiply (b, A) from the left and right with Householder transformations
Qk and Pk, respectively. Here Qk is chosen to zero the last m− k elements
in the kth column of (b, A) and Pk is chosen to zero the last n−k elements
in the kth row of A. The final result is the decomposition

UT
(

b AV
)

=

(

β1e1 B
0 0

)

, B =















α1

β2 α2

. . .
. . .

βn αn

βn+1















, (7.2)

where e1 is the first unit vector, and

U = Q1Q2 · · ·Qn+1 ∈ R
m×(n+1), V = P1P2 · · ·Pn−1 ∈ R

n×n. (7.3)

Note that the first column in U equals u1 = Ue1 = b/β1 and that UT AV =
B ∈ R

(n+1)×n is a lower bidiagonal matrix.
Setting y = V T x and using the invariance of the Euclidean norm it follows

that

‖b − Ax‖2 =

∥

∥

∥

∥

(

b A
)

(

−1
x

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

UT
(

b AV
)

(

−1
V T x

)∥

∥

∥

∥

2

= ‖β1e1 − By‖2. (7.4)



Hence, if y solves the bidiagonal least squares problem

min
y

‖By − β1e1‖2, (7.5)

then x = V y solves minx ‖Ax − b‖2.
After k < n steps of the bidiagonal reduction we have computed an

upper bidiagonal matrix Bk and orthogonal matrices Uk = Q1 · · ·Qk, and
Vk = P1 · · ·Pk, such that UT

k AVk = Bk. From the construction of the
Householder matrices Pj it follows that

U

(

Ik

0

)

= Q1 · · ·QkQk+1 · · ·Qn+1

(

Ik

0

)

= Q1 · · ·Qk

(

Ik

0

)

= Uk. (7.6)

This shows that the first k columns in Uk and the final matrix U are equal.
Similarly the first k columns in Vk equals those in V .

7.2. The core subproblem

Assume first that αj , βj+1 �= 0, j = 1 : k − 1, for some 1 ≤ k ≤ n, but
αk = 0. Then after k steps we have obtained a decomposition of the form

UT
k AVk =

(

Bk 0
0 Ak

)

,

where Bk ∈ R
k×(k−1) is a leading submatrix of B and Ak ∈ R

(m−k)×(n−k+1).
The resulting transformed least squares problem

min
y

∥

∥

∥

∥

(

Bk 0
0 Ak

) (

y1

y2

)

−
(

β1e1

0

)∥

∥

∥

∥

2

, y =

(

y1

y2

)

, (7.7)

is separable and decomposes into the two independent subproblems

min
y1

‖Bky1 − β1e1‖2 and min
y2

‖Aky2‖2. (7.8)

The first subproblem is similar to (7.5) and since Bk has full column rank
the solution y1 is unique. We call this the core subproblem. Clearly the
minimum norm solution x = V y is obtained by taking y2 = 0.

Assume next that also αk �= 0, but βk+1 = 0. Then the reduced mat-
rix again has the separable form (7.7), where now Bk ∈ R

k×k and Ak ∈
R

(m−k)×(n×k). The core subproblem then simplifies to Bky1 = β1e1, with
Bk square, nonsingular and lower triangular. The unique solution y1 is ob-
tained simply by forward substitution. Taking y2 = 0, the corresponding
residual b−AV ky is zero and hence in this case the original system Ax = b
is consistent.

We give two simple examples of termination. Assume first that b ⊥
R(A). Then the reduction will terminate with α1 = 0, and x = 0 is the
minimal norm least squares solution. As a second example, assume that



the bidiagonalization terminates with β2 = 0. Then the system Ax = b is
consistent and the minimum norm solution equals

x = (β1/α1)v1, v1 = V1e1 = P1e1.

The minimally dimensioned core subproblem, obtained by terminating the
bidiagonalization of (bA) when the first zero element is encountered, has
several important properties. The matrix Bk has full column rank and
its singular values are simple. Further, the right-hand side βe1 has non-
zero components along each left singular vector of Bk. These properties
considerably simplify the solution of the LS or TLS subproblem; see Paige
and Strakoš (2002).

7.3. Bidiagonalization using a Lanczos process

In the second approach to bidiagonalization in Golub and Kahan (1965),
the columns of U and V are generated sequentially by a Lanczos process.
The following algorithm is identical to the procedure Bidiag 1 in Paige and
Saunders (1982b). From (7.2) we get the equations

AV = UB and AT U = V BT . (7.9)

Setting

U = (u1 u2 · · · un+1), V = (v1 v2 · · · vn),

and equating columns in the two equations (7.9), we obtain the relations

AT u1 = α1v1, AT uj = βjvj−1 + αjvj , j = 2, . . . , n,

Avj = αjuj + βj+1uj+1, j = 1, . . . , n.

Given the unit starting vector u1 = b/β1, β1 = ‖b‖2, these relations can be
used to recursively compute the column vectors v1, u2, v2, . . . , un+1. We get

vj = rj/αj , uj+1 = sj/βj+1, j = 1, . . . , n, (7.10)

where

rj = AT uj − βjvj−1, αj = ‖rj‖2, (7.11)

sj = Avj − αjuj , βj+1 = ‖sj‖2. (7.12)

The advantage of using this process to generate Bk is that we only need to
be able to compute matrix–vector products with A and AT .

The recurrence relations can also be written in matrix form as

Uk+1(β1e1) = b, (7.13)

AVk = Uk+1Bk, (7.14)

AT Uk+1 = VkB
T
k + αk+1vk+1e

T
k+1. (7.15)



In exact arithmetic it holds that V T
k Vk = UT

k Uk = Ik. From the uniqueness
of the bidiagonal decomposition it follows that Bk, Uk and Vk, are the same
as generated by the Householder algorithm.

If ‖rj‖2 and ‖sj‖2 = 0 for j ≤ n, this process will terminate prematurely
with αj = 0 and βj+1 = 0, respectively. However, as shown previously, in
these cases the least squares problem is separable and the minimum norm
solution can be obtained from the partial decomposition computed so far.

7.4. A Krylov subspace method for least squares

For a square matrix C ∈ R
n×n and a vector z ∈ R

n we define the Krylov
subspace

Kk(C, z) = span
{

z, Cz, . . . , Ck−1z
}

. (7.16)

From the Lanczos recurrence relations (7.10)–(7.12) it follows by induction
that uj+1 ∈ Kj(AAT , u1) and vj ∈ Kj(A

TA, AT u1), j = 1 : n. Hence the
columns of Uk+1 and Vk form orthonormal bases for the Krylov subspaces

R(Uk) = Kk(AAT , u1), R(Vk) = Kk(A
TA, AT u1). (7.17)

Suppose that after performing the first k steps of bidiagonalization we
seek an approximate least squares solution of the form

xk = Vkyk. (7.18)

By (7.17) this is equivalent to restricting xk to lie in the Krylov subspace
Kk(A

TA, AT b). Using (7.14) we obtain

b − Axk = b − AVkyk = Uk+1(β1e1 − Bkyk)

and from the orthogonality of the columns of Uk+1 it follows that

‖b − Axk‖2 = ‖β1e1 − Bkyk‖2.

Hence ‖b−Axk‖2 is minimized over all xk ∈ R(Vk) by taking yk as a solution
to the least squares problem

min
yk

‖β1e1 − Bkyk‖2. (7.19)

This problem is of exactly the same form as that obtained when the reduc-
tion is completed. Since we are minimizing ‖b − Ax‖2 over an increasing
nested set of subspaces it follows that the sequence ‖b − Axk‖2, k = 1 : n,
will be non-increasing. Hence we can solve (7.19) for k = 1, 2, . . . and stop
when the residual norm of the solution is small enough. We then accept
x = Vkyk as an approximate solution of the original least squares problem.
Except for some details this is essentially the LSQR algorithm by Paige
and Saunders (1982b). The convergence properties of this algorithm will be
discussed in Section 10.2.



7.5. Solving the sequence of bidiagonal problems

The bidiagonal least squares problem can easily be solved by reducing Bk to
upper bidiagonal form. The QR decomposition of Bk is computed by pre-
multiplication with a sequence of Givens rotations. If these are also applied
to the right-hand side β1e1 we obtain

OT
k

(

Bk β1e1

)

=

(

Rk dk

0 φ̄k+1

)

, (7.20)

where

QT
k = Gk,k+1 · · ·G23G12, Gj,j+1 =

(

cj sj

−sj cj

)

, j = 1 : k, (7.21)

is a product of Givens rotations and

Rk =















ρ1 θ2

ρ2 θ3

ρ3
. . .
. . . θk

ρk















, fk =















φ1

φ2

φ3
...

φk















. (7.22)

The solution and residual to (7.19) can then be computed from upper bi-
diagonal linear system

Rkyk = dk, sk = φ̄k+1Qkek+1. (7.23)

The residual AT rk to the normal equations will be zero for the exact solution
x and this quantity can therefore be used as a stopping criterion. Using
(7.15) we obtain

AT rk = φ̄k+1A
T Uk+1Qkek+1 = φ̄k+1αk+1ckvk+1,

where ck = eT
k+1Qkek+1, the (k + 1)st diagonal element of Qk, equals the

element ck in Gk,k+1. Hence the norm

‖AT rk‖2 = φ̄k+1αk+1|ck| (7.24)

is cheaply computable.
Paige and Saunders (1982b) showed an ingenious way to interleave the

solution of (7.19) with the reduction to bidiagonal form. The QR decom-
position (7.20) can be efficiently updated. Assume that we have computed
Rk−1, fk−1 and φ̄k in (7.21)–(7.22). To update these quantities when a
column is added to Bk we first apply the Givens rotation to rows k − 1, k
in the last column in Bk:

Gk−1,k

(

0
αk

)

=

(

θk

ρ̄k

)

.



Next we construct and apply a Givens rotation Gk,k+1 to zero out the ele-
ment βk+1

Gk,k+1

(

ρ̄k φ̄k

βk+1 0

)

=

(

ρk φk

0 φ̄k+1

)

.

(Here only elements affected by the rotation are shown.)
From (7.23) we note that yk will normally differ from yk−1 in all its

elements. However, since Rk and fk differ from Rk−1 and fk−1 only in the
last row and column, we can write

xk = VkR
−1
k fk = Dkfk = xk−1 + φkdk,

where Dk =
(

d1 d2 · · · dk

)

is obtained from RT
k Dk = V T

k by forward
substitution, giving

dk = ρ−1
k (vk − θkdk−1). (7.25)

Only the last iterates dk and xk have to be saved. Although the residual
rk = Uk+1sk is not cheaply computable, by (7.23) its norm equals

‖rk‖2 = |φ̄k+1|.
The Householder algorithm gives a backward stable algorithm for comput-

ing the sequence of Krylov subspace approximations xk, k = 1, 2, . . . . For
problems where A is dense the cost is comparable to that for the Lanczos
approach.

In many least squares problems the ‘effective rank’ of the problem is much
smaller than n, i.e., a good approximate solution can be found in a subspace
of much smaller dimension than n. For example, this is the case in multiple
linear regression problems, where many columns of A are nearly linearly
dependent. The Krylov subspace method described above is a standard tool
for regression in chemometrics. In this context it is known as the partial
least squares (PLS) method; see Wold, Ruhe, Wold and Dunn (1984). It is
known that PLS often gives a faster reduction of the residual than TSVD;
see Eldén (2004). PLS is often implemented by a deflation method called
NIPALS (Nonlinear Iterative Partial Least Squares), or using the LSQR.
Since many of these problems are neither sparse nor particularly large an im-
plementation based on Householder bidiagonalization should be preferred.

8. Constrained and regularized problems

8.1. Constrained least squares problems

In various applications the solution to a least squares problem is required
to satisfy a subsystem of linear equations exactly. This is the least squares
problem with equality constraints (LSE)

min ‖b − Ax‖2 subject to Bx = d, (8.1)



where A ∈ R
m×n and B ∈ R

p×n, with m + p ≥ n ≥ p. If we assume that

rank(B) = p, N (A) ∩N (B) = 0,

then this problem has a unique solution. A survey of solution methods is
given in Björck (1996, Section 5.1). Perturbation bounds for problem LSE
are derived in Eldén (1980). An analysis of the accuracy and stability of
three different implementations of the null space method is given in Cox
and Higham (1999a), where a forward error bound suitable for practical use
is also derived.

Problem LSE arises, e.g., in the solution of inequality-constrained least
squares problem (LSI):

min ‖b − Ax‖2 subject to l ≤ Bx ≤ u, (8.2)

where the inequalities are to be interpreted componentwise, li ≤ (Bx)i ≤ ui,
i = 1 : p. We assume that linear equality constraints, if present, have been
eliminated and that the set M = {x | l ≤ Bx ≤ u} is not empty.

A special case is the least distance problem (LDP)

min ‖x1‖2 subject to l ≤ Bx ≤ u, (8.3)

where xT =
(

xT
1 xT

2

)

.
Questions of existence, uniqueness and boundedness of solutions to prob-

lem LSI are given by Lötstedt (1983). It is convenient to split the solution
into two mutually orthogonal components

x = xR + xN , xR ∈ R(AT ), xN ∈ N (A). (8.4)

The existence of a bounded solution x to (8.2) follows from the facts that the
objective function ‖Ax− b‖2 is bounded below by 0 and that the constraint
set l ≤ Cx ≤ u is convex and polyhedral. It can further be shown that
xR and Ax are uniquely determined; see Lötstedt (1983, Theorem 1). In
particular, if rank(A) = n then N (A) is empty and the solution is unique.
The sensitivity of the solution of problem LSI to perturbations in the data
A, B, b is also studied in Lötstedt (1983).

An important special case of problem LSI is when the inequalities are
simple bounds, problem BLS:

min
l≤x≤u

‖Ax − b‖2. (8.5)

(Some lower and upper bounds may not be present.) For reasons of com-
putational efficiency it is essential that such constraints be considered sep-
arately from more general constraints in (8.2). If rank(A) = n the BLS
problem is a strictly convex optimization problem and there exists a unique
solution for any vector b.



Sometimes only one-sided bounds apply. After a shift these can then
be transformed into x ≥ 0 and we have a least squares problems with
nonnegativity constraints (NNLS):

min
x≥0

‖Ax − b‖2. (8.6)

Problems BLS and NNLS arise naturally in many applications, e.g., recon-
struction problems in geodesy and tomography, contact problems for mech-
anical systems, control problems, etc. It can often be argued that a linear
model is only realistic when the variables are constrained within meaningful
intervals.

To determine a unique solution for the BLS problem when rank(A) < n,
we may look for a solution to the problem

min
x∈M

‖x‖2, M =
{

x | min
l≤x≤u

‖Ax − b‖2

}

. (8.7)

Lötstedt (1984) developed a two-stage algorithm to solve problem (8.7).
In the first stage a particular solution x to (8.5) is determined. If x is
decomposed according to (8.4) then xR is uniquely determined, but any xN

such that x remains feasible is admissible. Since ‖x‖2
2 = ‖xR‖2

2 + ‖xN‖2
2 in

the second stage we need to solve

min
l≤x≤u

‖xN‖2, xN ∈ N (A). (8.8)

Let

AT = (U1 U2)

(

S 0
0 0

) (

V T
1

V T
2

)

(8.9)

be a full orthogonal decomposition of AT with S nonsingular (this could be
the SVD of AT ). Then R(AT ) is spanned by U1 and N (A) by U2 and we
have

xR = U1(U
T
1 x), xN = U2(U

T
2 x) = U2z.

Since U2 has orthonormal columns, problem (8.8) is equivalent to

min ‖z‖2, l − xR ≤ U2z ≤ u − xR, (8.10)

which is a least distance problem for z.
In general, methods for problems with inequality constraints are iterative

in nature. At the solution only a certain subset of the inequalities will be
active, i.e., satisfied with equality. If this set was known the solution to the
LSI problem could be found from a problem with equality constraints, for
which efficient solution techniques exist. In active set methods a sequence
of equality-constrained problems are solved corresponding to predictions of
the correct active set.



An implementation of an active set method for NNLS is given in Lawson
and Hanson (1995). This can also be used to solve problem LDP using a
dual approach; see Cline (1975). Consider the least distance problem with
lower bounds

min
x

‖x‖2, subject to c ≤ Bx. (8.11)

Let u ∈ R
m+1 be the solution to the NNLS problem

min
u

‖Au − b‖2, subject to u ≥ 0, (8.12)

where

A =

(

BT

cT

)

, b =

(

0
1

)

}n
}1. (8.13)

Let the residual corresponding to the solution be

r ≡ b − Au =

(

r1

γ

)

}n
}1, σ = ‖r‖2.

If σ �= 0, then the vector x = −r1/γ, is the unique solution to (8.11). If
σ = 0, then the constraints g ≤ Bx are inconsistent and (8.11) has no
solution. Hence this relation also gives a method to determine if a set of
linear inequalities has a feasible solution by solving an NNLS problem.

Problem LSI can be transformed into an LDP problem by using the or-
thogonal decomposition (8.9). An algorithm based on this transformation
and the dual approach for solving the LDP problem is given by Lawson
and Hanson (1995, Chapter 23) (see also Haskell and Hanson (1981)). The
method proposed by Schittkowski (1983) for solving the LDP problem is a
primal method.

8.2. Regularization of discrete ill-posed problems

Inverse problems are problems where we want to determine the structure
of a physical system from its measured behaviour. Such problems are often
ill-posed in the sense that their solution does not depend continuously on
the data. Inverse problems arise in many application such as astronomy,
computerized tomography, geophysics, signal processing, etc.

The discretization of ill-posed problems gives rise to a class of least squares
problems

min
x

‖Ax − b‖2, A ∈ R
m×n, (8.14)

that share a number of properties. The singular values of A decay gradually
and cluster at zero, resulting in a huge condition number; cf. Figure 6.1.
However, the components of the right-hand side b along singular vectors
corresponding to small singular values decay rapidly, so that the systems
are effectively well-conditioned in the sense of Chan and Foulser (1988).



Owing to the huge condition number and the presence of noise in the
right-hand side b, additional information, e.g., in the form of constraints,
must be imposed on the solution in order to get a regularized problem with
a well-determined solution. Neglecting this can be catastrophic, since it
may lead to a meaningless solution of huge norm, or even to failure of the
algorithm.

One common regularization method is to project the linear system onto
a smaller dimensional problem by solving

min
x∈Vk

‖b − Ax‖2,

where Vk is a suitably chosen subspace of dimension k < n. One possible
choice is the subspace spanned by the first k right-singular vectors of A,
which leads to a TSVD solution (3.11). Another choice is to use the Krylov
subspaces Vk = Kk(A

TA, AT u1) (7.17), which corresponds to using LSQR
or the PLS method. There is some evidence that for ill-posed problems
the Krylov subspaces often have better approximation properties than the
singular subspaces used in TSVD; see Hanke (2001).

Another widely used regularization method is Tikhonov regularization
(Tikhonov 1963). In this method an approximate solution is obtained by
solving a least squares problem with a quadratic constraint

min
x

‖Ax − b‖2 subject to ‖Lx‖2 ≤ γ, L ∈ R
p×n. (8.15)

Here γ > 0 is the regularization parameter, which is used to find a bal-
ance between the size of the residual ‖Ax − b‖2 and size of the solution
as measured by the norm (or seminorm) ‖Lx‖2. This makes it possible to
include a priori information about the size or smoothness of the solution.
In statistics Tikhonov’s method is known as ridge regression. A survey of
the properties of least squares problems with a quadratic constraint is given
by Gander (1981). Problem (8.15) is related to, but less general than, the
trust-region subproblem in optimization; see Rojas and Sorensen (2002).

In the following we discuss the simple but important case when L = I.
Methods to transform (8.15) into this standard form are described in Hansen
(1998, Section 2.3). In (8.15) the constraint is binding if ‖A†b‖2 > γ, which
is invariably the case in regularization of ill-posed problems. Then x = x(λ)
solves the least squares problem

min
x

∥

∥

∥

∥

(

A√
λL

)

x −
(

b
0

)∥

∥

∥

∥

2

, (8.16)

where the Lagrange multiplier λ is determined by the secular equation
g(λ) = ‖x(λ)‖2 − γ = 0.



Using the singular value decomposition A = UΣV T and setting c = UT b,
the secular equation becomes

g(λ) =

(

n
∑

i=1

σ2
i c

2
i

(σ2
i + λ)2

)1/2

− γ = 0. (8.17)

Here each term is a convex and strictly decreasing function of λ. Since the
Euclidean norm is monotonic, the same then also holds for g(λ). This shows
that if γ < g(0) then the secular equation has a unique root λ > 0.

To determine λ by an iterative method, faster convergence is obtained by
writing the secular equation in the form

f(λ) =
1

‖x(λ)‖2
− 1

γ
= 0. (8.18)

Reinsch (1971) showed that f(λ) is a concave and strictly increasing function
for λ > 0. It follows that Newton’s method is monotonically convergent to
the solution λ∗ from any starting value λ0 ∈ [0, λ∗]. Usually about 4–6
iterations suffice, even when λ0 ≪ λ∗.

Writing x(λ) = (AT A + λI)−1AT b and taking the derivative with respect
to λ, we find that

f ′(λ) = −xT (λ)x′(λ)

‖x(λ)‖3
2

, x′(λ) = −(AT A + λI)−1x(λ). (8.19)

Here

x(λ)T x(λ)′ = −x(λ)T (AT A + λI)−1x(λ) = −‖z(λ)‖2
2, (8.20)

and Newton’s method for equation (8.18) becomes

λk+1 = λk +

(‖x(λk)‖2

γ
− 1

)‖x(λk)‖2
2

‖z(λk)‖2
2

. (8.21)

Given the QR decomposition

Q(λk)
T

(

A√
λkI

)

=

(

R(λk)
0

)

, Q(λk)
T

(

b
0

)

=

(

c1(λk)
c2(λk)

)

, (8.22)

and using (8.20) we obtain

x(λk) = R(λk)
−1c1(λk), z(λk) = R(λk)

−T x(λk).

The main cost per iteration step in Newton’s method is the QR decom-
position (8.22). Computing the derivative costs only one triangular solve.
Hence Newton’s method is to be preferred to the secant method and other
methods based on interpolation.

When A ∈ R
m×n is a full matrix computing the Householder QR decom-

position in each iteration requires about mn2 multiplications. As pointed
out by Moré (1978), if m > n it is more efficient to initially compute the



QR of A at a cost of mn2 − n3/3 multiplications. For each value λk we can
then compute R(λk) from the QR decomposition of

(

R√
λkI

)

in n3/3 multiplications. However, if A is sparse R may have many more
nonzero elements than A and then this modification will instead increase

the amount of work.
The repeated QR decomposition can be avoided by computing the SVD or

a bidiagonal decomposition of A. The bidiagonal form can be updated with
O(n) multiplications when λ changes, as shown by Eldén (1977). Since the
initial reduction requires 4n3/3 flops (2n3/3 if m = n) the reduction to bi-
diagonal form pays off in the dense case if more than four Newton iterations
are needed.

9. Direct methods for sparse problems

A matrix A is called sparse if many of its entries are zero. Clearly a square
and banded matrix is sparse, but sparse matrices that have much more
irregular sparsity pattern occur in many applications in science and engin-
eering. Often these problems are huge and it is essential that advantage is
taken of sparsity for storage and operations. Matrix operations on general
sparse matrices are supported in Matlab: see Gilbert, Moler and Schreiber
(1992) for a discussion of design and implementation of these algorithms.

9.1. QR factorization of banded matrices

A banded matrix A ∈ R
m×n, m ≥ n, is a matrix for which in each row the

nonzero elements lie in a narrow band. By the bandwidth of A we mean
smallest number w such that

|j − k| ≥ w ⇒ aijaik = 0 i = 1 : n. (9.1)

It is easy to deduce that if A has bandwidth w then the upper triangular
part of AT A and its Cholesky factor R also have bandwidth w. Forming
AT A and computing its Cholesky factorization therefore requires only about
1
2(m+n)w2 multiplications. The QR decomposition of a banded matrix can
also be computed efficiently, but the implementation is not quite trivial! The
standard Householder QR factorization algorithm can be very inefficient and
cause unnecessary intermediate fill-in. Similarly, if a row-wise reduction
with Givens rotations is used the operation count and intermediate storage
requirement can differ strongly for different row orderings of A.



Reid (1967) showed that for banded rectangular matrices the QR factor-
ization can be obtained very efficiently by sorting the rows of A and suitably
subdividing the Householder transformations. The rows of A are first sorted
by leading entry order (i.e., increasing minimum column subscript order)
so that the matrix is represented as q blocks

A =













A1

A2

...

Aq













, q ≤ n,

where in block Ai the first nonzero element of each row is in column i. The
Householder QR process is then applied to the matrix in q major steps. In
the first step a QR decomposition of the first block A1 is computed, yielding
R1. Next, at step k, k = 2 : q, Rk−1 will be merged with Ak, yielding

QT
k

(

Rk−1

Ak

)

= Rk.

Since the rows of block Ak have their first nonzero elements in column k, the
first k−1 rows of Rk−1 will not be affected. The matrix Q can be implicitly
represented in terms of the Householder vectors of the factorization of the
subblocks. This sequential Householder algorithm, which is also described
in Lawson and Hanson (1995, Chapter 27), requires (m + 3n/2)w(w + 1)
multiplications or about twice the work of the less stable Cholesky approach.

A banded upper triangular matrix can be reduced to bidiagonal form
using an algorithm similar to the one used by Schwarz (1968) for reducing a
symmetric banded matrix to tridiagonal form. However, because each zero
element introduced generates a new nonzero element that has to be ‘chased’
across the border of the matrix, the reduction is much more expensive than
the QR decomposition The reduction of a banded upper triangular matrix
to bidiagonal form requires ≈ 4n2(w − 2) multiplications. A computational
routine for this called xGBBRD in LAPACK uses a vectorized version due
to Kaufman (1984), in which several elements are chased in parallel.

A special case occurs in regularization, where we need the repeated QR
decomposition of

(

R1√
λR2

)

,

for banded matrices R1 and R2. Note that if the above row ordering al-
gorithm is applied this will interleave the rows of R1 and R2. Eldén (1984)
gives a row-wise Givens algorithm which requires approximately 2n(w2

1+w2
2)

multiplications and is optimal in that no unnecessary fill-in is created.



9.2. Block angular least squares problems

There is often a substantial similarity in the structure of many large-scale
sparse least squares problems. In particular, the problem can often be put
in the following bordered block diagonal or block angular form:

A =











A1 B1

A2 B2

. . .
...

AM BM











, x =

















x1

x2
...

xM

z

















, b =











b1

b2
...

bM











, (9.2)

where A ∈ R
m×n,

Ai ∈ R
mi×ni , Bi ∈ R

mi×p, i = 1, 2, . . . , M.

We assume in the following, for simplicity, that rank(A) = n. Note that
the variables x1, . . . , xM are coupled only to the variables z, which reflects
a ‘local connection’ structure in the underlying physical problem. There is
usually further structure in the individual blocks Ai and Bi that should be
taken advantage of.

Applications where the form (9.2) arises naturally in many applications in-
cluding photogrammetry (Golub, Luk and Pagano 1979), Doppler radar pos-
itioning (Manneback, Murigande and Toint 1985), geodetic survey problems
(Golub and Plemmons 1980) and GPS positioning (Chang and Paige 2003),

It is easily seen that then the factor R in the QR decomposition of A will
have the block structure

R =

















R1 S1

R2 S2

. . .
...

RM SM

RM+1

















, (9.3)

where by assumption Ri ∈ R
nieni , i = 1, . . . , M + 1 is nonsingular.

The following algorithm for solving least squares problems of block angu-
lar form by QR decomposition is given in Golub et al. (1979).

(1) For i = 1, 2, . . . , M reduce the diagonal block Ai to upper triangular
form by a sequence of orthogonal transformations applied to (Ai, Bi)
and the right-hand side bi, yielding

QT
i (Ai, Bi) =

(

Ri Si

0 Ti

)

, QT
i bi =

(

ci

di

)

.



It is usually advantageous to continue the reduction in step (1) so that
the matrices Ti, i = 1, . . . , M , are brought into upper trapezoidal form.

(2) Compute the QR decomposition

Q̃T
M+1









T1

...

TM









=

(

RM+1

0

)

, Q̃T
M+1









d1

...

dM









=

(

cM+1

dM+1

)

.

Then the linking variables z are obtained from the triangular system

RM+1z = cM+1

and the residual norm equals ρ = ‖dM+1‖2.

(3) For i = M, . . . , 1 compute xM , . . . , x1 by back-substitution in the tri-
angular systems

Rixi = ci − Siz.

Note that in steps (1) and (3) the computations can be performed in parallel
on the M independent subsystems.

There are many alternative ways to organize this algorithm. Cox (1990)
considers the following modifications to reduce the storage requirement. By
merging steps (1) and (2) it is not necessary to hold all blocks Ti simultan-
eously in memory. Even more storage can be saved by discarding Ri and Si

after Ti has been computed in step (1). These matrices are then recomputed
when needed for step (3). Indeed, only Ri needs to be recomputed, since
when z has been computed in step (2), we can determine xi by solving the
least squares problems

min
xi

‖Aixi − gi‖2, gi = bi − Biz, i = 1, . . . , M.

Hence, to determine xi we only need to (re-)compute the QR factorization
of (Ai, gi). In some practical problems this modification can reduce the
storage requirement by an order of magnitude, while the recomputation of
Ri only increases the operation count by a few per cent.

9.3. QR decomposition for general sparse matrices

The factor R in the QR decomposition of A is mathematically equivalent
to the Cholesky factor of the cross product matrix ATA. Although this is
true in exact arithmetic the difficulty in recognizing numerical cancellation
means that the computed structure of the Cholesky factor can overestim-
ate the structure of R. However, in many cases it accurately predicts the
structure of R.



A reordering of the rows and columns of A can be written Â = PrAPc,
where Pr and Pc are permutation matrices. Since

ÂT Â = P T
c AT P T

r PrAPc = P T
c AT APc,

this corresponds to a symmetric reordering of ATA. Hence the column
ordering of A will affect the structure and number of nonzeros nnz(R) in R.
A reordering of the rows in A has no effect on the final R, but influences
the sparsity of Q and the number of operations needed to perform the
decomposition.

Before computing R numerically, it is important to find a to find a column
ordering that approximately minimizes the number of nonzero elements
in R. (Finding the optimal ordering is known to be an NP-complete prob-
lem.) The simplest ordering methods use a priori information, such as
ordering the columns in order of increasing column count. Such orderings
are usually inferior to ordering methods obtained from a symmetric order-
ing on the structure of the normal matrix, using minimum degree or nested
dissection. The graph G(ATA) representing the structure of ATA can be
constructed directly from the structure of the matrix A as being the direct
sum of all the subgraphs G(aia

T
i ), i = 1, . . . , m. Note that the nonzeros in

any row aT
i will generate a subgraph where all pairs of nodes are connec-

ted. Good surveys of the state of the art in symmetric ordering algorithms
and direct methods for sparse linear systems are given in Duff (1997) and
Dongarra et al. (1998, Chapter 6).

After a column ordering Pc has been determined, the rows in the per-
muted matrix APc should be reordered to minimize intermediate fill-in.
The following heuristic row ordering method usually works well. Denote
the column index for the first and last nonzero elements in the ith row by
fi and li, respectively. The rows are ordered by increasing values of fi, and
in each group of rows with equal fi after increasing li. (This is the row
ordering used for rectangular banded matrices.)

For the numerical QR decomposition several implementations of multi-
frontal methods for QR have been developed; see Matstoms (1995), Amestoy,
Duff and Puglisi (1996). Multifrontal methods have the advantage of allow-
ing dense matrix kernels to be used in the sparse matrix code and can be
considered as a generalization of methods for banded matrices.

A problem with the QR decomposition is that for a large class of sparse
matrices the matrix Q will be much less sparse than R. If A ∈ R

m×n is
a matrix of full column rank, such that its column intersection graph is a
member of a

√
n-separable class of graphs, then it is shown in Gilbert, Ng

and Peyton (1997) that there exists a column permutation P such that

nnz(R) = O(n log n), nnz(Q1) = O(n
√

n),



where Q =
(

Q1 Q2

)

. These bounds are best possible within a constant
factor for a large class of matrices. It is therefore not advisable to store
Q1 (or Q) explicitly. In Matlab sparse QR the matrix Q is provided if
wanted, but this option should be used with care!

Because of the lack of sparsity in Q a common practice when solving
sparse least squares problems is to compute QT b ‘on the fly’ for any right-
hand side available at the time of decomposition and discard the orthogonal
transformations after they have been used. This approach, advocated in
George and Heath (1980), is also taken in several later multifrontal QR
codes; see Matstoms (1994), Sun (1996) and Pierce and Lewis (1997).

To discard Q creates a problem if additional right-hand sides b are to be
treated later. George and Heath (1980) suggested that if the original matrix
A is saved one can use R from the QR decomposition, rewriting the normal
equations as

RT Rx = AT b, (9.4)

known as the seminormal equations (SNE). Even with R from the QR de-
composition in (9.4) this is not an acceptable-error stable algorithm for the
least squares problem. However, if improved by one step of iterative re-
finement in fixed precision it is, in most cases, numerically acceptable. A
detailed error analysis of this algorithm, called CSNE, is given in Björck
(1987).

Lu and Barlow (1996) use the multifrontal QR factorization method and
represent Q implicitly by storing the frontal Householder vectors. Let Ai

be the matrix consisting of those rows of A that have their leading nonzero
element in column i. Provided that the number of rows of each Ai is bounded
by a constant, Lu and Barlow (1996) show that their method requires only
O(n log n) storage if A ∈ R

m×n is a member of a
√

n-separable class of
graphs. Adlers (2000) has developed a similar implementation for Matlab,
which provides Q by storing the frontal Householder vectors. Operator
overloading is used to implement the matrix–vector products Qy and QT y.

10. Iterative methods

10.1. Introduction

For several classes of large sparse least squares problems iterative meth-
ods are useful alternatives to direct methods. Iterative methods for the
linear least squares problem (1.1) can be derived by applying an iterative
method for symmetric positive definite linear systems to the normal equa-
tions AT Ax = AT b. However, it is important to avoid the explicit formation
of AT A since this leads to a loss of stability. Also, AT A can be much less
sparse than A, leading to higher cost of storage and operations. Instead the



factored form of the normal equations AT (Ax− b) = 0 should be employed.
This is well illustrated by the non-stationary Richardson’s method for least
squares problems, which should be written

xk+1 = xk + ωkA
T rk, rk = b − Axk. (10.1)

This method, also known as Landweber’s method, can be shown to converge,
provided that, for some ǫ > 0,

0 < ǫ < ωk < (2 − ǫ)/σ2
max(A), ∀k.

As is typical for iterative methods for least squares problems the matrix A
need only accessed through its action in the matrix–vector operations Axk

and AT rk. This can also be an advantage for problems where A is dense
but structured. Consider, e.g., a rectangular Toeplitz matrix

T =











t0 t1 . . . tn
t−1 t0 . . . tn−1
...

...
. . .

...
t−m t−m+1 . . . t0











∈ R
(m+1)×(n+1), for m ≥ n,

defined by the (n+m+1) values of t−m, . . . , t0, . . . , tn. Toeplitz linear least
squares problems of large dimension arise in many applications, e.g., in sig-
nal restoration, acoustics, and seismic exploration. Matrix–vector products
Txk and T T rk can be computed at a cost of O(m log m) by embedding T in
a circulant matrix and using FFT; see Chan, Nagy and Plemmons (1994).
Fast multiplication algorithms also exist for several other classes of struc-
tured matrices, e.g., Vandermonde and Cauchy matrices; see Gohberg and
Olshevsky (1994).

10.2. Implementation of Krylov subspace methods

In Sections 7.4–7.5 we outlined the LSQR Krylov subspace algorithm for the
least squares problem. A different way to compute the same sequence of ap-
proximations xk is to use the conjugate gradient method (CG), developed in
the early 1950s. This has become a basic tool for solving large sparse sym-
metric positive definite linear systems. If applied to the normal equations
it can also be used to solve linear least squares problems. The conjugate
gradient algorithm for the normal equations generates approximations xk

in the Krylov subspace

xk ∈ Kk(A
T A, s0), s0 = AT b. (10.2)

The iterates xk generated are optimal in the sense that, for each k, y = xk

minimizes the error functional

E(y) = (x − y)T (AT A)(x − y), y ∈ Kk(A
T A, s0). (10.3)



Using A(x − xk) = b − r − Axk = rk − r, we obtain

E(xk) = ‖r − rk‖2 = ‖rk‖2 − ‖r‖2, (10.4)

where the second expression follows from the fact that r ⊥ r − rk.
The following version of CGLS was originally given by Hestenes and

Stiefel (1952, p. 424) and Stiefel (1952/53).
Initialize

r0 = b, s0 = p1 = AT r0, γ0 = ‖s0‖2
2, (10.5)

and for k = 1, 2, . . . compute

qk = Apk,

αk = γk−1/‖qk‖2
2,

xk = xk−1 + αkpk,

rk = rk−1 − αkqk, sk = AT rk,

γk = ‖sk‖2
2,

βk = γk/γk−1,

pk+1 = sk + βkpk.

Each iteration requires two matrix vector products and 2m + 3n multiplic-
ations. Storage is required for the n-vectors x, p and m-vectors r, q.

The variational property of the conjugate gradient method implies that,
in exact arithmetic, the error functional ‖r − rk‖2 (as well as ‖rk‖2) de-
creases monotonically as a function of k. In Hestenes and Stiefel (1952,
p. 416) it is proved that the error functional ‖x−xk‖2 also decreases mono-
tonically. However, when κ(A) is large, ‖AT (r − rk)‖2 will often exhibit
large oscillations. We stress that this behaviour is not a result of rounding
errors.

If A has t ≤ n distinct singular values, then (in exact arithmetic) the
solution is obtained in at most t steps. It is well known that an upper
bound on the rate of convergence is given by

‖r − rk‖2
2 ≤ 2

(

κ − 1

κ + 1

)k

‖r0‖2
2, (10.6)

where κ = κ(A); see Björck (1996, Section 7.4). The convergence also
depends on the distribution of the singular values of A and often superlinear
convergence is observed.

The LSQR algorithm (Paige and Saunders 1982a) generates, in exact
arithmetic, the same sequence of approximations xk as CGLS. In LSQR
the Lanczos process described in Section 7.3 is used to compute uk, vk and
Bk, for k = 1, 2, . . . . This is interleaved with the solution of the bidiagonal
systems as described in Section 7.5.



In addition to two matrix vector products LSQR requires 3m + 5n mul-
tiplications and storage of two m-vectors u, Av, and three n-vectors x, v, w.
Although this is slightly more storage and operations than CGLS, this is
partly offset by the fact that viable rules for stopping the iterations are more
costly for CGLS than for LSQR. For LSQR Paige and Saunders (1982b) con-
sider several stopping rules which use (estimates of) ‖rk‖, ‖xk‖, ‖AT rk‖, ‖A‖,
and ‖A†‖. All these quantities can be obtained at minimal cost in LSQR.
For CGLS ‖sk‖ is available but ‖rk‖ has to be separately computed, if
needed, at an extra cost of m multiplications.

In finite precision orthogonality will be lost for Uk and Vk. This causes
a slowdown of convergence, but does not affect the final accuracy. A com-
parison of the stability of LSQR and CGLS is given in Björck, Elfving and
Strakoš (1998). It may be believed that LSQR, since its derivation avoids
any references to the normal equations, should have better stability prop-
erties than CGLS. To some extent that is true, but the difference is rather
small. Björck et al. (1998) compares the achievable accuracy in finite pre-
cision of different implementations of Krylov subspace methods for solving
(1.1). The conclusion from both theoretical analysis and experimental evid-
ence is that LSQR and CGLS are both well behaved and achieve a final
accuracy consistent with a backward stable method.

A slightly different version of CGLS is obtained if, instead of rk, the
residual of the normal equations sk = AT rk is recurred. For this, line 4 in
algorithm CGLS becomes

sk = sk−1 − αk(A
T qk).

As shown in Björck et al. (1998), this small change can substantially lower
the achievable final accuracy in CGLS. This can be explained by noting
that in this version the right-hand side b is used only in the initialization
p0 = s0 = AT b and no reference to b is made in the iterative phase. A com-
ponentwise round-off analysis shows that round-off occurring in computing
AT b perturbs the solution by δx, where

|δx| ≤ γm|(AT A)−1| |AT | |b|. (10.7)

Using norms we obtain the bound

‖δx‖2 ≤ γm‖(AT A)−1‖2 ‖AT ‖2 ‖b‖2 = γmκ2(A)‖b‖2/‖A‖2, (10.8)

where γm = mu/(1 − mu). Comparing with the perturbation bounds in
Section 2 we see that this error term is a factor ‖b‖2/‖r‖2 larger than is
allowed for a backward stable algorithm. Note that for nearly consistent
systems we obtain ‖b‖2 ≫ ‖r‖2.
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Å. Björck and C. C. Paige (1992), ‘Loss and recapture of orthogonality in the

modified Gram–Schmidt algorithm’, SIAM J. Matrix Anal. Appl. 13, 176–
190.
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